

Supplementary Materials for

Speleothems Reveal 500,000-Year History of Siberian Permafrost

A. Vaks,* O. S. Gutareva, S. F. M. Breitenbach, E. Avirmed, A. J. Mason, A. L. Thomas,A. V. Osinzev, A. M. Kononov, G. M. Henderson

*To whom correspondence should be addressed. E-mail: anton.vaks@earth.ox.ac.uk

Published 21 February 2013 on *Science* Express DOI: 10.1126/science.1228729

This PDF file includes: Materials and Methods Supplementary Text Figs. S1 to S16 Tables S1 to S3 References

Supporting online material

Table of contents:

Description of the caves	2
Ledyanaya Lenskaya Cave	2
Botovskaya Cave	4
Okhotnichya Cave	6
Temperature monitoring inside/outside the Siberian caves	9
Shar-Khana Cave	9
Gurvan Ze'erd Cave	9
Lovon Chombo Cave	10
Speleothem thickness and petrography	10
Methods	18
Supplementary References and Notes	21
Tables of U-Th data and age modelling results	22

Description of the caves:

Ledyanaya Lenskaya Cave:

Located at $60^{\circ}22'16"$ N-116°56'47"E, 116 km E-S-E from the town of Lensk, 180 m above sea level, on the north-eastern bank of the Lena River in a cliff ~50 m above the river. The vegetation is sub-boreal taiga forest with precipitation of ~400 mm/y, and monthly mean air temperatures range from 18°C in July to -32°C in January (1). The cave is located in Cambrian limestones and marls; its length is ~130 m, consisting of one main passage 90 m long going from the entrance in a N-NE direction and ascending by ~10°, ending with a large hall partially filled with massive ice. The ice is many meters thick and it is unknown if there are any speleothems buried under it. A few narrow moderately ascending corridors split from the main passage in E-NE direction and end in small chambers in which inactive vadose speleothems are found (Suppl. Fig. 1). The depth of the chamber containing speleothems is 15-20 m, and the depth of the large hall with ice is ~60 m below the surface.

According to the permafrost map of Ershov (1991) (2) the cave is located under "mainly continuous permafrost" up to 50 m thick, that may contain 3-5% of through and not through taliks (permafrost type 18 on the map; taliks - small patches of unfrozen ground). The air temperature in the lower part of the main corridor is -3.5°C (in March 2010, with outside temperature -19°C) increasing in the upper parts of the cave to 0.0° C - +0.4°C in the hall with the massive ice, and to +0.8 °C in the chamber with speleothems. Although the temperatures there are slightly above zero, no water seepage or speleothem growth was found in August 2009 or March 2010, showing that the rock above the cave is completely frozen with no presence of through talks above the cave. The ice in the uppermost part of the cave is forming from condensation and freezing of outside atmospheric vapour. The formation of this ice is most intense in summer, when the air entering the cave is warm and humid. In winter the amount of ice decreases because of sublimation of the vapour from the cave into the cold dry air outside. According to Ford and Williams (1989), p. 351 (3), formation of ice in the uppermost and warmest part of caves shows that the cooling that creates the ice occurs when warm and moist air from outside the cave comes in contact with frozen rock inside the cave, so the ice in Ledyanaya Lenskaya Cave indicates the presence of permafrost. In the ice hall remnants of a fireplace lit by modern local visitors was found on the ice. The later could also contribute to the relatively high modern cave temperatures. Historical evidence from the 18th century reports a much colder air temperature of -10.4°C (-8.3°R, mercury thermometer, Reaumur Scale) in the ice hall during summer time, when the outside temperature was $+22^{\circ}C$ ($+17.5^{\circ}R$) (4), showing that at the end of the Little Ice Age the cave's temperatures were much lower than today. Formation of speleothems in Ledyanaya Lenskaya Cave in the past presents evidence of permafrost degradation from "mainly continuous" type (18 at Suppl. Fig. 2) to one of the discontinuous types (15-17 at Suppl. Fig. 2) at least.

Supplementary Figure 2: Permafrost settings in which Lenskaya Ledyanaya Cave (red circle) is located (2).

Botovskaya Cave:

Located at 55°17'59"N-105°19'46"E, 58 km N-NE from the town of Zhigalovo, 750 m above sea level, at the head of a small valley NE of the Boti River. The latter joins the Lena River 8.6 km SE from the cave. The vegetation is sub-boreal taiga forest with precipitation of ~400 mm/y, and monthly mean air temperatures ranging from 18°C in July to -28°C in January (1). The cave is located in Ordovician limestones and sandstones. This is one of the longest karstic cave systems in Russia, reaching a total length of more than 64 km. The cave is a horizontal maze of thousands of passages developed along the crisscross system of tectonic fissures (Suppl. Fig. 3). The depth of the cave is 40-130 m below the surface and the cave air temperatures vary from $\leq 0^{\circ}$ C in the cold zones to 1.6-1.9°C in its warmest parts (Suppl. Fig. 4). The temperatures in the cave and outside were monitored between February 2010 and February 2011. Mean annual air temperature outside the cave is -2.8° C, varying between summer and winter extremes from $+35^{\circ}$ C to -40° C. In places where temperature loggers were deployed the temperatures were found to be constant throughout the year, but higher than the annual mean by 4.4-4.7°C (Suppl. Fig. 4). The cave ceiling is relatively thick, whereas the permafrost thickness in this area is less than 100 m (2). It is therefore possible that permafrost layer prevents water from entering many parts of the cave, whereas the cave below remains warmer than 0°C. The only area where water seepage occurs and vadose speleothems grow today is the eastern part of the cave (Suppl. Fig. 3), located under a small depression at the surface. This depression allows formation of an intermittent stream that concentrates rain/snowmelt water to seep into the cave, probably causing an absence of permafrost in this local area. The majority of the studied speleothem samples were collected in this eastern part of the cave. In order not to damage the cave's natural beauty we collected only small amounts of inconspicuous stalagmite material for the study. The western part of the cave is dry (although non-active old speleothems are found there too) and some passages there are clogged with massive ice with $\leq 0^{\circ}$ C temperatures, showing that the cave is located in discontinuous permafrost.

Supplementary Figure 3: Map of Botovskaya Cave with locations of speleothems and temperature loggers.

Supplementary Figure 4: Botovskaya Cave temperature (T) monitoring 2010-2011.

Okhotnichya Cave:

Located at 52°07'41"N-105°29'11"E, the Okhotnichya Cave is 700 m above sea level, 83 km E-SE from the city of Irkutsk, 11 km NE from the village of Bolshoe-Goloustnoe and 4.6 NW from the shore of Lake Baikal. The vegetation is mixed deciduous and conifer forest with precipitation of ~400 mm/y, and monthly mean air temperatures range from 16° C in July to -16° C in January (5). The cave is located in Cambrian stromatolite limestones with basaltic dykes in places. The cave has one main large entrance hall steeply descending from the entrance, and then splitting into several systems of passages oriented preferably in a NNE-SSW direction (Suppl. Fig. 5). The total length of the cave's passages is ~5700 m, and the average depth of the cave's passages is 20-30 m below the surface. Water seepage and speleothem growth can be found everywhere in the cave. Temperatures inside and outside the cave were monitored from September 2008 to November 2011 and the three-year mean air temperature outside the cave is -0.2°C, varying between the extremes of +34°C and -38°C (Suppl. Fig. 6). Cave air temperature is constant in the deep parts of the cave: 1.2°C where samples SOP-3, 5 were taken (temperature logger pk-956, Suppl. Figs. 5, 6) and 1.4°C near samples SOP-11-20 (temperature loggers Rp-7, pk-371, Suppl. Figs. 5, 6). The central part of the cave from which samples SOP-1, 2, and 25 were taken, traps cold air from the entrance during winter and the temperature there varies between 0.3°C in summer and -1.3°C in winter (temperature logger in "ikaite zone", Suppl. Figs. 5, 6). Variable small amounts of ice are found in the latter location most of the year. Slightly closer to the entrance scattered ikaite (cryogenic carbonate) crystals can be found on the floor and on fallen

boulders, presenting evidence for the existence of a large body of cave ice in the past (6). Water seepage is found everywhere in the cave, which indicates that the rock above the cave is mainly permafrost-free, or that isolated patches of permafrost are small in size.

Supplementary Figure 5: Map of Okhotnichya Cave with locations of speleothem samples and temperature loggers.

To minimize damage to the environment of the Okhotnichya Cave most samples taken were already broken (though with their initial attachment position still identified). When sampling of in-situ active speleothems was necessary, we collected hidden speleothems. In one case where this was not possible, we replaced the stalagmite (SOP-20) with a ceramic replica (Suppl. Fig. 7) to give the impression that no sample was removed.

Supplementary Figure 7: Construction of a ceramic replica stalagmite to replace a removed sample. A drip logger was also placed inside the replica. Work performed by D. Sokolnikov (top) and A. Osinzev (bottom right). The stalagmite replica was later painted in brown to make it the same colour as the surroundings.

Temperature monitoring inside/outside the Siberian caves

Hobo UA Pendant Temp Loggers were deployed in Ledyanaya Lenskaya, Botovskaya and Okhotnichya caves to monitor the cave air temperatures in places where speleothems were taken. Loggers were also placed outside the caves in the shadowy northern side of tree trunks, 2 m above the ground, to monitor the temperatures outside the caves. The logger's uncertainty is 0.47°C. The temperature data from Botovskaya and Okhotnichya caves is presented in Suppl. Figs. 4 and 6.

Shar-Khana Cave:

The cave is located at $45^{\circ}35'23.1$ "N-108°19'18.8"E, in the Central Gobi Desert in Mongolia, 1200 m above sea level and 85 km south of the town of Choir. The vegetation is semi-desert sparse shrubs and grasses with precipitation of 130-150 mm/y, and monthly mean temperatures ranging from 22°C in July to -18°C in January (7). The cave is located in limestones and marbles of Upper Proterozoic, its depth varies between 13 and 25 m, with a length of 178.2 m. The cave is an underground paleo-stream channel going from ESE to WNW (125°) (Suppl. Fig. 8A) and sandy and gravel sediments washed in from the surface cover the floor. Several shafts ascend upward from the main channel and speleothems are mainly found at or beneath these shafts. The speleothems are of two types: vadose corallites and flowstone/phreatic overgrowth. The cave is completely dry, no water seepage/growing speleothems were observed. The cave air temperature is ~4°C.

Gurvan Ze'erd Cave:

The cave is located at 42°30'15.7"N-107°27'00.1"E, in the Southern Gobi Desert in Mongolia, 1075 m above sea level, 79 km SSE of the town of Khanbogd and 5 km north of the Mongolian-Chinese border. The monthly mean temperatures range from 26°C in July to -12°C in January (7) and the vegetation is desert sparse shrubs and grasses. Although literature reports a precipitation of 50-60 mm/y in this region (7), the vegetation density is similar to the Central Gobi, indicating that the real precipitation amounts may be higher. The cave is located in red limestones of Lower-Middle Proterozoic, and is ~50 m long, 30-40 m wide and 5-30 m below the surface (Suppl. Fig. 8B). The cave is composed of several round halls together with phreatic dissolution domes on the ceiling above. One of these domes was truncated by erosion forming the cave's entrance located on the NW slope of the mountain. The speleothems in the cave are mainly phreatic overgrowths covering the walls. Several stalagmite-like formations can be found on the floor, the largest is located on a rock-fall and reaching 30 cm high (Suppl. Fig. 13). The top of this speleothem was broken lying nearby and was taken, as well as two cores taken by the drilling the tops of two small stalagmite-like formations. The form of the layers in these speleothems put their vadose origin in doubt and makes their phreatic origin more likely. The cave temperature is 9.0°C. A significant part of the cave's sediments is bat guano. This guano burned at some time in the past "cooking" the outer layers of the most of the speleothems.

Lovon Chombo Cave:

The cave is located at 42°35'18.4"N-107°49'32.0"E, in the Southern Gobi Desert in Mongolia, 1195 m above sea level, 84 km SE of the town of Khanbogd and 19 km north of the Mongolian-Chinese border. The vegetation and the climate are similar to that of the Gurvan-Ze'erd cave area. The cave is located in brown limestones of Lower-Middle Proterozoic, it is ~49.5 m long, 10-20 m below the surface and composed of two halls as shown on Suppl. Fig. 8C. The floor of the larger hall covered by thick (1 m) red clay sediments and the walls of the cave are covered by phreatic overgrowth speleothems 5-15 cm thick (Suppl. Fig. 14). One broken piece of this overgrowth was sampled. In the smaller hall these phreatic speleothems have marks of past groundwater levels. The temperature in the cave is 8.8°C.

Supplementary Figure 8: Maps and cross-sections of Mongolian Caves (8).

Speleothem thickness and petrography:

In the northernmost Ledyanaya Lenskaya Cave the maximum speleothem thickness (from the bedrock to the uppermost horizon) is ~8 cm. Speleothems consist of four to seven calcite horizons, each composed of brown or grey columnar calcite crystals, which are usually clean from detrital material. These calcite horizons are separated by whitish or beige thin layers of

microcrystalline calcite (<2 mm thick), sometimes containing pieces of marl and limestone host rock. The latter layers represent breaks in speleothem growth (hiatuses) with pieces of broken host rock that fell from the cave ceiling, remaining on the ancient speleothem surface (Suppl. Fig. 9).

In Botovskaya Cave, active speleothems are found in the eastern part of the cave. The western part of the cave is generally dry with no active speleothems. Maximal thickness of the speleothems in the cave is ~60 cm, showing that, compared to Ledyanaya Lenskaya Cave, the humid and less cold climate of Botovskaya Cave area provided speleothems more opportunities to grow. This includes also the dry part of the cave, where speleothems younger than in Ledyanaya Lenskaya are found (SB-01112). However, growth breaks separating the calcite/aragonite layers are also present here (Suppl. Fig. 10). Most of the speleothems are composed of aragonite, but some of calcite. Sometimes aragonite and calcite layers are present in the same stalagmite. The thickness of calcite and aragonite horizons usually reaches several cm, and these horizons are separated by hiatuses, as in Ledyanaya Lenskaya Cave (Suppl. Fig. 10).

In Okhotnichya Cave the overall speleothem thickness exceeds 70 cm, showing more intensive speleothem accumulation than in Botovskaya and Ledyanaya Lenskaya Caves. Speleothems are composed of calcite, with smaller amounts of Mg-calcite and aragonite. The petrography of calcite horizons alternating with growth breaks is similar to that found in Ledyanaya Lenskaya and Botovskaya Caves, but the thickness of calcite horizons is larger (Suppl. Fig. 11).

In the Gobi Desert the amounts and thickness of vadose speleothems is smaller. In Shar-Khana Cave a few vadose cave corallites, up to 15 cm thick were found on the walls (Suppl. Fig. 12-I, II). Overgrowths up to 7 cm thick composed of yellow and black calcite layers were found in places on the cave's walls (Suppl. Fig. 12-III). It was difficult to determine if the latter were flowstones or phreatic overgrowth. In Gurvan-Ze'erd the speleothems are mainly phreatic overgrowths 10-30 cm thick. Several stalagmite-like calcite mounds were found on the cave's floor, but their vadose origin (vadose speleothems form above the groundwater table from downward gravity flow of water) is doubtful because their layer morphology more closely resembles the overgrowth pattern of crystallisation from standing water, typical for phreatic calcite (Suppl. Fig 13). All outermost layers of Gurvan-Ze'erd speleothems underwent heating by burning bat guano in the past and therefore were unsuitable for dating, but dating of three deeper and better preserved horizons of these speleothems gave ages >550 ka. In Lovon-Chombo Cave only speleothems of phreatic overgrowth type were found with age >550 ka (Suppl. Fig. 14). Absence of obvious vadose speleothems in the two southernmost caves may indicate permanent aridity since the uplift of these caves above the groundwater level.

Supplementary Figure 9: Speleothems from Ledyanaya Lenskaya Cave: I-II - Stalactite SLL9-2 with 4 growth layers, which youngest layer A is 427 ± 23 ka (II - right sample pit). The left sample pit was too deep and crossed into older layer B (dark spot inside the sample pit) yielding a mixed age of 467 ± 10 ka. The hiatus between A and B is marked by red fragmented line at the top of layer A and inside the left sample pit (II); III – stalactite SLL9-4 aged ~500 ka. Other speleothems older than U-Th dating limit: are: IV - stalagmite SLL10-6 with 7 growth layers and hiatuses in between; flowstones SLL10-4 (V) and SLL10-8 (VI), and stalactites SLL9-1 (VII), SLL9-3 (VIII) and SLL10-9 (IX).

Supplementary Figure 10: Major speleothems from Botovskaya Cave with their ages in ka: I – stalagmite SB-p6919; II – stalagmite SB-p6929; III - stalagmite SB-p7497; IV – stalagmite SB-p7497-2; V - stalagmite SB-p7497-3; VI – stalagmite SB-p01112.

Supplementary Figure 11: Major speleothems from Okhotnichya Cave with their ages in ka: I – stalagmite SOP-2; II – stalagmite SOP-16; III - stalagmite SOP-15; IV – stalagmite SOP-20, cores from tops of stalagmites SOP-18 (V) and SOP-19 (IV).

Supplementary Figure 12: Major speleothems from Shar-Khana Cave with their ages in ka: I – corallite MSHK-4; II – corallite MSHK-7; III – phreatic wall overgrowth MSHK-16.

Supplementary Figure 13: Major speleothems from Gurvan Ze'erd Cave: I – stalagmite-like speleothem MGZ-14; II – the broken top of MGZ-14 that was found nearby and showing petrography more resembling a phreatic overgrowth than stalagmite; cores from speleothems MGZ-8 (III) and MGZ-9 (VI) (calcite mounds on the floor). The latter also don't show typical stalagmite stratigraphy and the irregular boundaries between layers may also indicate phreatic conditions. The outer layers of all speleothems in this cave are "baked" by burning bat guano that prevented their dating. Locations of the layers where ages (ka) where determined are shown by arrows.

Supplementary Figure 14: Phreatic speleothems from Lovon Chombo Cave (left); a slab of the phreatic overgrowth calcite MLCH-5 which is older than 550 ka (right).

Methods

The speleothems were sectioned using a diamond saw to expose the internal structure and to identify and eliminate diagenetically altered samples by visual inspection. Between 10 and 400 mg of powder was drilled from each sampled horizons using 0.8-1 mm drill bits. Speleothem mineralogy was examined at ETH Zurich, Switzerland, using powder XRD diffractometer (Bruker, AXS D8 Advance), equipped with a scintillation counter and an automatic sampler. Hand specimen inspection shows that all sampled horizons chosen for dating had a typical columnar petrography in calcite and fibrous petrography in aragonite, with almost no voids or recrystallization marks, suggesting that they are likely have maintained closed system conditions for U-Th isotopes (Suppl. Figs. 9-15).

Supplementary Figure 15: Fibrous petrography of the aragonite layers E and F, and columnar petrography of calcite layer G beneath them in stalagmite SB-01112 (Botovskaya Cave) – A; columnar petrography in layer D of stalagmite SOP-20 (Okhotnichya Cave) – B.

For the U and Th analysis, the samples were spiked with a mixed ²²⁹Th-²³⁶U spike, dissolved in HNO₃ and refluxed on a hot-plate overnight for spike-sample equilibration. Chemical separation of U and Th from the sample matrix follows procedures adapted from Edwards et al. 1986 (*9*). Measurement of U and Th was performed by Nu-Instrument Multicollector-Inductively-Coupled-Plasma-Mass Spectrometer (MC-ICP-MS) at the University of Oxford. Uranium measurement was performed utilizing Faraday cups for ²³⁸U, ²³⁶U, and ²³⁵U, and ion-counter for the ²³⁴U. Abundance sensitivity was corrected based on the half-mass dynamic measurements at 236.5, 235.5, 234.5 and 233.5 on the ion-counter during the initial part of the U measurement. Dynamic Th measurements were performed based on the method of Mason and Henderson (*10*). Major beams ²³⁸U, ²³⁵U and ²³²Th were measured on Faraday cups and minor beams of ²³⁰Th and ²²⁹Th on ion-counter in two steps (²³⁵U-²³²Th-²³⁰Th and ²³⁸U-²³⁵U-²²⁹Th); instrumental memory measured in the same configuration before the each sample analysis, and has been corrected for.

Signal noise between the two steps was corrected for by normalising to the respective ²³⁵U measurement in each step. Abundance sensitivity was corrected based on the half-mass dynamic measurements at 230.5, 229.5 and 228.5 on the ion-counter during the final part of the Th measurement. Machine biases (ion counter gains and mass fractionation) were corrected using sample-standard bracketing with CRM-145 for U, and two in house ²²⁹Th-²³⁰Th-²³²Th standards for Th.

The half-lives of 234 U and 230 Th used for the age calculation were 245,250 years and 75,690 years respectively according to Cheng et al. (2000) (*11*) and the half-life of 238 U was 4.46831*10⁹ years according to Jaffey et al. (1971) (*12*). Average system blanks for 238 U, 232 Th and 230 Th were 3.1*10⁻¹¹, 1.3*10⁻¹², 9.1*10⁻¹⁶ gram respectively. Quoted age uncertainties include the analytical uncertainties, but not the uncertainty in spike calibration.

Dating results and their correction for initial Th were calculated using the Isoplot 4.15 program (*13*) and are presented in Supplementary Table (ST) 1. Speleothem 234 U/ 238 U and 230 Th/ 238 U activity ratios are presented in Suppl. Fig. 16. U concentrations in calcite vary between several hundred ppb to tens of ppm, whereas in aragonite they vary from tens to more than 150 ppm. Th concentrations usually vary between 0.5 and 3 ppb, and up to a few tens of ppb in rare cases. Average 230 Th/ 232 Th activity ratio in the analysed speleothem samples was ~400,000, and only in five Late Holocene speleothem horizons (from total 111 samples) this ratio was below 100. The 232 Th/ 238 U activity ratios vary between 1.2*10⁻³ and 2.7*10⁻⁷ with an average of 7.1*10⁻⁴. Therefore correction for initial Th was small (ST 1), with six ages becoming younger by 150-625 years, whereas all other ages changed by less than 100 years (overall average correction of 27 years). All corrected ages are quoted as before 1950 AD.

To assess the timing of onset and cessation of speleothem growth for important periods, U-Th ages were extrapolated using the OxCal-4.1 program (14). Although samples for U-Th analyses were taken as close as possible to growth hiatuses, it is impossible to sample the hiatus itself due to the finite width of samples which must be taken to obtain enough material for U-Th analyses. In addition, sampling at a hiatus risks incorporating a small amount of 'contaminating' material from the other side of the hiatus, therefore samples were taken a small distance from hiatuses.

The age model applied to each speleothem forces all U-Th ages within a speleothem to be in stratigraphic order, with each growth period bounded at the hiatuses with a boundary defining the depth at which growth initiates and finishes. To extrapolate the U-Th ages and hence determine ages for these boundaries the accumulation rate is controlled using a P_Sequence (15). The P_Sequence is a semi-quantitive control on the variability of the accumulation rate achived by inserting aditional age control points within the sequence which must also obey stratigraphic order. The greater the number of additional control points per unit length (k) the more linear the age model is forced to be. A k value of 1.5 (depth units were in cm) was chosen because this gave a good agreement with the U-Th data, where multiple U-Th data were available between hiatuses. A greater k value would result in more linear accumulation rates, and higher precision

estimates of the boundary ages, but would produce age models which were not in agreement with the variability of sedimentation rates observed in the U-Th data.

Supplementary Figure 16: $^{234}U/^{238}U$ and $^{230}Th/^{238}U$ activity ratios of Siberian and Mongolian speleothems with their 2σ error bars ^{230}Th (shown in red), based on raw data from Supplementary Table 1 (not corrected for initial ^{230}Th). The black lines show the paths of radioactive decay for various initial $^{234}U/^{238}U$ activity ratios when the initial $^{230}Th/^{238}U$ activity ratio is 0. Note the very high ($^{234}U/^{238}U$) ratios of many samples, and the lack of samples in the "forbidden zone" in the bottom right of the figure.

To further constrain the ages of boundaries determined by the age modelling approach, the boundaries in separate speleothems corresponding to the same growth period are assumed to be the same age. This additional constraint is only applied when the ages of the boundaries were within 2σ error of each other. This is a reasonable constraint considering the proposed regional control on speleothem growth. Where speleothem growth was clearly dependent on a local rather than a regional control, the affected boundary for that speleothem was not used to determine the timings of growth for that interglacial. For example: for stalagmites SB-7497 and SB-6929 only the top boundary age is consistent with a regional climatic control, whereas the bottom boundary was affected by local control (they started growing on the collapsed sediments much later then the beginning of the MIS-5.5 (SB-7497) or Holocene (SB-6929)).

The results of the OxCal-4.1calculations were applied for Holocene and MIS-5.5 interglacial boundary ages. They are shown in ST-2 and ST-3 and also given as grey rectangles in Fig. 3. For older interglacials the growth periods are shown as the range of U-Th ages.

Additional References of GICC05 record - (16-19).

Supplementary References and Notes:

- 1. Philip's, Ed., *Modern School Atlas, 95-th edition*, (Philip's, a division of Octopus Publishing Group Limited, London, 2007).
- 2. E. D. Ershov, in *Geocriological map of the USSR, 1:2500000 (in Russian)*. (Ministry of Geology of USSR and Moscow State University, Moscow, 1991).
- 3. D. Ford, P. W. Williams, *Karst Geomorphology and Hydrology*. (Unwin Hyman, London, 1989), pp. 601 pp.
- 4. A. G. Filippov, in *Enisey Province, Almanac*. (Krasnoyarsk Territorial Museum of Local History, Krasnoyarsk, Russia, 2009), vol. Issue 4, pp. 168-175.
- 5. A. A. Bukharow *et al., Atlas: Lake Baikal, past, present, future*. N. S. Owchinnikova, Ed., (FGUP Eastern Siberian Aero-Geodesic Corporation, Irkutsk 664000, Russia, 2005).
- 6. D. Lacelle, B. Lauriol, I. D. Clark, *Journal of Cave and Karst Studies* **71**, 48 (2009).
- D. Dorjotov, N. Orshikh, T. Oyunchimeg, *Geographic Atlas of Mongolian Republic (in Mongolian)*.
 (Mongolian Institute of Geodesy and Cartography Ulaanbaatar, Mongolia, 2004), pp. 64.
- 8. E. Avirmed, *The Caves of Mongolia (In Mongolian, Russian/English abstracts)*. S. Tzegmid, P. Tzolmon, Eds., (Academy of Sciences of Mongolian Republic, Ulaan-Baatar, 1999), pp. 206.
- 9. L. R. Edwards, J. H. Chen, G. J. Wasserburg, *Earth and Planetary Science Letters* **81**, 175 (1987).
- 10. A. J. Mason, G. M. Henderson, International Journal of Mass Spectrometry 295, 26 (2010).
- 11. H. Cheng, L. R. Edwards, C. Hoff, C. D. Gallup, Y. Richards, *Chemical Geology* **169**, 17 (2000).
- 12. A. H. Jaffey, K. F. Flynn, L. E. Glendenin, W. C. Bentley, A. M. Essling, *Physical Review C* **4**, 1889 (1971).
- 13. K. A. Ludwig, Ed., *User's Manual for Isoplot 3.75-4.15, a Geochronological Toolkit for Microsoft Excel,* vol. 5 (Berkeley Geochronological Centre, Berkeley CA, USA, 2012), vol. 5.
- 14. C. B. Ramsey, *Radiocarbon* **51**, 337 (2009).
- 15. C. B. Ramsey, *Quaternary Science Reviews* **27**, 42 (2008).
- 16. K. K. Andersen *et al.*, *Quaternary Science Reviews* **25**, 3246 (2006).
- 17. S. O. Rasmussen *et al.*, *Quaternary Science Reviews* **27**, 18 (2008).
- 18. A. Svensson *et al.*, *Quaternary Science Reviews* **25**, 3258 (2006).
- 19. B. M. Vinther *et al.*, *J. Geophys. Res.* **111**, D13102 (2006).
- 20. C. B. Ramsey, *Radiocarbon* **37**, 425 (1995).

Supp	plementary Table 1, pa	ge 1.																				
Nu.	Cave	Sample	²³⁸ U (ppm)	²³² Th (ppb)	(²³⁰ Th/ ²³² Th)	(²³² Th/ ²³⁸ U)	2σ abs	(²³⁰ Th/ ²³⁸ U)	2σ abs	(²³⁴ U/ ²³⁸ U)	2σ abs	Raw Age (ka before 2010 A.D.)	2σ	(²³⁰ Th/ ²³⁸ U) corr.	2σ abs	(²³⁴ U/ ²³⁸ U) corr.	2σ abs	(²³⁴ U/ ²³⁸ U) initial*	Age corr. (ka before 2010 A.D.)	2σ	Age (ka before 1950 A.D.)	20
		0104.0	22.65	4 70	44000	2.465.05	2 245 00	1 02424	0.00400	4 04255	0.00445		,	4 00404	0.00400	4 04255	0.00445			1		
1	Lenskaya Ledyanaya	SLL9-1-B	23.65	1.78	41232	2.46E-05	3.21E-08	1.02131	0.00133	1.01355	0.00115	>550	n/a	1.02131	0.00133	1.01355	0.00115		>550	n/a	>550	n/a
2	Lenskaya Ledyanaya	SLL9-1-C	22.60	1.79	39129	2.59E-05	3.44E-08	1.01983	0.00135	1.01292	0.00115	>550	n/a	1.01983	0.00135	1.01292	0.00115		>550	n/a	>550	n/a
2	Lonskava Lodvanava	5110.2.4	70 77	44.01	2621	E 11E 04	1 495 05	1 24467	0.00470	1 26002	0.00416	427	22	1 24492	0.00470	1 27004	0.00416	1 00270	427	22	427	22
1	Lenskaya Leuyanaya	SII0_2_A+R **	28.77	7 50	158/18	8 54E-05	1.46L-03	1.34407	0.00473	1.20332	0.00410	427	10	1.34462	0.00473	1.27004	0.00410	2 01051	427	10	427	10
5	Lenskava Ledvanava	SU 9-2-D	29.58	1.50	60547	1.85E-05	2 47E-08	1 12533	0.00150	1.09017	0.00115	>550	n/a	1 12533	0.00150	1 09017	0.00115	2.01551	>550	n/a	>550	n/a
5	Echiska ya Ecayana ya	5225 2 0	25.50	1.07	00547	1.052 05	2.472 00	1.12555	0.00150	1.05017	0.00113	, , , , , , , , , , , , , , , , , , , ,	ny a	1.12555	0.00150	1.05017	0.00115		/ 330	ny a	- 330	11/ 0
6	Lenskava Ledvanava	SLL9-3-A	9.49	0.96	32546	3.30E-05	4.48F-08	1.08892	0.00148	1.04965	0.00115	>550	n/a	1.08892	0.00148	1.04965	0.00115		>550	n/a	>550	n/a
7	Lenskava Ledvanava	SLL9-3-D	34.70	0.56	188674	5.29E-06	6.93E-09	1.01659	0.00133	1.01659	0.00115	>550	n/a	1.01659	0.00133	1.01659	0.00115		545	36	545	36
8	Lenskava Ledvanava	SLL9-3-E	34.66	1.34	66205	1.27E-05	7.02E-08	1.01879	0.00386	1.01672	0.00098	>550	n/a	1.01879	0.00386	1.01672	0.00098		>550	n/a	>550	n/a
9	Lenskaya Ledyanaya	SLL9-3-G	14.83	0.42	106891	9.28E-06	1.21E-08	1.01692	0.00132	1.01353	0.00115	>550	n/a	1.01692	0.00132	1.01353	0.00115		>550	n/a	>550	n/a
10	Lenskaya Ledyanaya	SLL9-4-B	27.53	0.87	96816	1.04E-05	1.33E-08	1.01772	0.00130	1.01852	0.00115	524	28	1.01772	0.00130	1.01852	0.00115		524	28	524	28
11	Lenskaya Ledyanaya	SLL9-4-C	23.58	2.63	27718	3.65E-05	4.68E-08	1.01631	0.00130	1.01915	0.00115	499	22	1.01631	0.00130	1.01915	0.00115		499	22	499	22
12	Lenskaya Ledyanaya	SLL10-4-A	27.70	20.67	4842	2.44E-04	8.44E-07	1.19427	0.00412	1.13799	0.00156	i >550	n/a	1.19431	0.00412	1.13802	0.00157		>550	n/a	>550	n/a
13	Lenskaya Ledyanaya	SLL10-6-A	43.22	13.07	13289	9.90E-05	2.74E-07	1.32480	0.00366	1.21627	0.00156	i >550	n/a	1.32482	0.00366	1.21628	0.00156		>550	n/a	>550	n/a
14	Lenskaya Ledyanaya	SLL10-8-A	44.55	12.76	11671	9.37E-05	2.27E-07	1.11027	0.00268	1.07921	0.00156	i >550	n/a	1.11028	0.00268	1.07921	0.00156		>550	n/a	>550	n/a
15	Lenskaya Ledyanaya	SLL10-9-A	21.31	4.09	18781	6.28E-05	6.34E-06	1.12320	0.00630	1.08883	0.00336	>550	n/a	1.12321	0.00630	1.08883	0.00336		>550	n/a	>550	n/a
16	Lenskaya Ledyanaya	SLL10-9-Bbot	26.60	0.77	97372	9.45E-06	9.53E-07	1.07615	0.00588	1.05056	0.00336	>550	n/a	1.07615	0.00588	1.05056	0.00336		>550	n/a	>550	n/a
47		60. 01110 A	0.46	1.01	2622	4 205 02	4 9 45 95	2 20705	0.04400	2.06760	0.00070	242		2 400 40	0.04404	2 0 0 0 7 0	0.00000	5 36330	242			
1/	Botovskaya	SB-p01112-A	0.46	1.81	2623	1.28E-03	1.24E-05	3.39786	0.01123	2.96769	0.00278	312	4	3.40040	0.01131	2.96978	0.00299	5.76270	312	4	312	4
18	Botovskaya	SB-p1112-E	38.13	0.26	281855	2.25E-06	2.2/E-0/	2.72593	0.01496	2.31146	0.00336	404	14	2.72593	0.01496	2.31146	0.00336	5.10509	404	14	404	14
19	Botovskaya	SB-p01112-G	1.01	0.04	123369	1.41E-05	1.35E-07	2.59411	0.00790	2.20924	0.00278	408	9	2.59412	0.00790	2.20926	0.00278	4.83184	408	9	408	9
20	Botovskaya	SB-p1112-N	F2 65	0.90	10025092	1.55E-05 E E1E 06	1.30E-00	2.33323	0.01323	1.94656	0.00330	>550	n/a	2.55525	0.01323	1.94640	0.00330		>550	n/a	>550	n/a
21	Botovskava	SB-p1112-Ptop	68 57	5.43	74670	2 50E-05	2.61E-06	2 02102	0.01121	1 73231	0.00330	>550	n/a	2 02104	0.01121	1 73233	0.00330		>550	n/a	>550	n/a
22	DOLOVSKAYA	3B-p1112-F000	08.57	5.45	74070	2.351-03	2.011-00	2.02152	0.01111	1.75251	0.00330	>350	nya	2.02134	0.01111	1.75255	0.00550		>350	nya	~550	11/ 4
23	Botovskava	SB-p6915-B	3.51	1.02	10241	9.54E-05	9.15E-07	1.00023	0.00304	1.00772	0.00278	496	60	1.00023	0.00304	1.00772	0.00278		496	61	496	61
			0.0-2				0.101 0.															
24	Botovskaya	SB-p6919-A1	0.73	3.08	24	1.39E-03	9.71E-06	0.03120	0.00004	6.73293	0.00156	0.505	0.001	0.03009	0.00063	6.73950	0.00365	6.7474	0.486	0.010	0.426	0.010
25	Botovskaya	SB-p6919-Btop	0.62	6.34	71	3.36E-03	6.16E-06	0.23669	0.00035	6.75991	0.00094	3.858	0.006	0.23457	0.00132	6.77594	0.00812	6.8385	3.814	0.022	3.754	0.022
26	Botovskaya	SB-p6919-Bbot	0.73	1.96	511	8.77E-04	1.53E-06	0.45105	0.00062	6.93818	0.00094	7.24	0.01	0.45065	0.00068	6.94249	0.00236	7.0652	7.234	0.011	7.174	0.011
27	Botovskaya	SB-p6919-C1	0.68	1.77	4300	8.51E-04	1.08E-06	3.68608	0.00464	4.94461	0.00094	118.68	0.23	3.68797	0.00474	4.94739	0.00169	6.5204	118.67	0.24	118.61	0.24
28	Botovskaya	SB-p6919-C4	1.02	2.17	5560	6.99E-04	8.79E-07	3.94775	0.00494	5.04202	0.00094	128.07	0.26	3.94946	0.00501	5.04435	0.00151	6.8082	128.06	0.27	128.00	0.27
29	Botovskaya	SB-p6919-D1	0.70	2.55	3134	1.20E-03	1.48E-06	3.77892	0.00465	3.87977	0.00094	193.6	0.5	3.78168	0.00486	3.88263	0.00173	5.9815	193.5	0.6	193.5	0.6
30	Botovskaya	SB-p6919-D2	0.89	3.99	2568	1.47E-03	1.82E-06	3.78561	0.00466	3.82684	0.00094	200.4	0.5	3.78900	0.00497	3.83027	0.00199	5.9861	200.4	0.6	200.3	0.6
31	Botovskaya	SB-p6929-top	54.53	5.76	722	3.46E-05	2.58E-07	0.02505	0.00007	3.38920	0.00070	0.806	0.002	0.02502	0.00007	3.38926	0.00070	3.3947	0.805	0.002	0.745	0.002
32	Botovskaya	SB-p6929-bot	102.45	12.03	6560	3.85E-05	1.14E-07	0.25639	0.00076	3.38385	0.00070	8.494	0.026	0.25637	0.00076	3.38393	0.00070	3.4418	8.493	0.026	8.433	0.026
~ ~												0.501										
33	Botovskaya	SB-p7497-A1	94.09	6.14	746	2.14E-05	1.61E-07	0.01662	0.00005	3.47526	0.00070	0.521	0.002	0.01660	0.00005	3.47530	0.00070	3.4789	0.520	0.002	0.460	0.002
34	Botovskaya	SB-p7497-I	158.12	0.13	385301	2.68E-07	9.00E-10	0.32416	0.00109	3.6/5/0	0.00070	9.93	0.03	0.32416	0.00109	3.6/5/0	0.00070	3.7519	9.934	0.035	9.874	0.035
35	Botovskaya	SB-p/49/-J	88.34	1.38	509387	5.10E-06	1.40E-08	2.018/8	0.00554	2.76532	0.00070	118.89	0.52	2.01878	0.00554	2.76532	0.00070	3.4703	118.89	0.52	118.83	0.52
30	вотоузкауа	SB-01491-0	35.96	1.51	134890	1.37E-05	4.40E-08	2.08760	0.00668	2.80083	0.00070	122.77	0.637	2.08/61	0.00668	2.80085	0.00070	3.5478	122.77	0.64	122.71	0.64
27	Botovskava	SB-07/07 2 42	140 54	0.20	6078550	6 525 07	6 575 00	2 10011	0.01260	1 00702	0.00226	210	0	2 10011	0.01260	1 00702	0 00226	3 1522	210	0	210	0
32	Botovskava	SB-n7407-2-H1	126 /6	0.20	14276136	1 555-06	1 575-07	2.15011	0.01200	1 99/7/	0.00330	320	0	2.15011	0.01200	1 99/7/	0.00330	3.4525	320	0 2	320	0 0
39	Botovskava	SB-n7497-2-11	146 88	0.00	3795917	2 22F-06	2 23F-07	2 20363	0.01235	2 00929	0.00336	313	7	2 20362	0.01233	2 00929	0.00330	3 4452	313	7	313	7
40	Botovskava	SB-n7497-2-11	132 10	0.77	12343271	1 91F-06	1 93F-07	2 22469	0.0124/	2 01122	0.00330	324	8	2 22470	0.01244	2 01122	0.00330	3 5263	324	8	324	, 8
41	Botovskava	SB-p7497-2-0hot	99 16	0.21	730849	6.77F-07	6.83F-08	2.27791	0.01263	2.02957	0.00336	343	9	2.27791	0.01244	2.02957	0.00336	3.7159	343	9	343	9
		p57 2 0000	55.10	0.21		0	0.002 00		0.01205	2.02337	0.00000	545	5		0.01205	2.02337	0.00000	5155	545		0.10	
42	Botovskaya	SB-p7497-3-A2	101.49	0.31	133444	9.95E-07	1.00E-07	2.04212	0.01123	1.81259	0.00336	383	14	2.04212	0.01123	1.81259	0.00336	3.3976	383	14	383	14
43	Botovskaya	SB-p7497-3-Ebot	89.54	0.73	158503	2.69E-06	2.71E-07	2.05694	0.01136	1.81236	0.00336	400	16	2.05695	0.01136	1.81236	0.00336	3.5175	400	16	400	16
<u> </u>				. <u> </u>								1										

Sup	plementary Table 1, pa	ge 2.																				
NI	Cavo	Sampla	²³⁸ U	²³² Th	(230 Th (232 Th)	(232 The (238 LI)	2 mahr	(230 - Lo / 238	2 mahr	(234) (238)	2 mahr	Raw Age (ka	2~	(²³⁰ Th/ ²³⁸ U)	2 mahr	(²³⁴ U/ ²³⁸ U)	2 mahr	(²³⁴ U/ ²³⁸ U)	Age corr. (ka	20	Age (ka before	20
Nu.	Cave	Sample	(ppm)	(ppb)	(117 11)	(11/ 0)	20 abs	(11/ 0)	20 abs	(0/ 0)	20 abs	before 2010 A.D.)	20	corr.	20 abs	corr.	20 805	initial*	before 2010 A.D.)	20	1950 A.D.)	20
44	Okhotnichya	SOP-1-B	3.95	5.81	2994	4.81E-04	4.97E-06	1.42283	0.00484	1.56038	0.00114	199.6	1.7	1.42300	0.00485	1.56060	0.00115	1.98534	199.5	1.7	199.5	1.7
45	Okhotnichya	SOP-1-D (II)	4.76	0.14	134213	9.30E-06	1.53E-08	1.42508	0.00212	1.36532	0.00098	342	3	1.42508	0.00212	1.36532	0.00098	1.96060	342	3	342	3
																					ļ	
46	Okhotnichya	SOP-2-A	4.10	81.38	5	6.49E-03	1.57E-05	0.03527	0.00121	1.82091	0.00166	2.124	0.073	0.03006	0.00318	1.82534	0.00309	1.82956	1.804	0.193	1.744	0.193
47	Okhotnichya	SOP-2-D	4.88	0.88	2776	5.89E-05	9.05E-08	0.16798	0.00027	1.92249	0.00098	9.874	0.017	0.16794	0.00027	1.92253	0.00098	1.94863	9.872	0.017	9.812	0.017
48	Okhotnichya	SOP-2-Etop	4.19	0.74	17883	5.77E-05	8.47E-08	1.06420	0.00160	1.51644	0.00098	119.5	0.3	1.06420	0.00160	1.51647	0.00098	1.72397	119.50	0.34	119.44	0.34
49	Okhotnichya	SOP-2-Ebot	4.37	1.99	7026	1.49E-04	2.18E-07	1.05714	0.00160	1.48357	0.00098	123.1	0.4	1.05715	0.00160	1.48363	0.00098	1.68486	123.09	0.36	123.03	0.36
50	Okhotnichya	SOP-2-F1	4.27	3.94	3690	3.02E-04	4.45E-07	1.12274	0.00170	1.55927	0.00098	124.3	0.4	1.12277	0.00171	1.55941	0.00099	1.79477	124.25	0.36	124.19	0.36
51	Okhotnichya	SOP-2-F3	4.86	1.49	11433	1.01E-04	1.48E-07	1.1/356	0.001//	1.61095	0.00098	126.1	0.4	1.1/35/	0.00178	1.61101	0.00098	1.8/262	126.10	0.36	126.04	0.36
52	Okhotnichya	SOP-2-GZ	0.23	0.17	120620	8.70E-06	2.52E-07	1.25301	0.00366	1.40668	0.00416	195.6	2.2	1.25301	0.00366	1.40669	0.00416	1.70694	195.6	2.2	195.6	2.2
55	Okhotnichya	SOP-2-05	3.79	1.05	0/09	2.085.05	4.13E-00	1.27002	0.00370	1.36510	0.00416	212.1	2.0	1.27005	0.00370	1.36520	0.00416	1.70145	212.1	2.0	212.0	2.0
54	Okhotnichya	SOP-2-HILOP	3.54	0.33	3/34/	3.08E-05	8.92E-07	1.26435	0.00373	1.20402	0.00416	320	9	1.26430	0.00373	1.20402	0.00416	1.60455	320	9	320	9
56	Okhotnichya	SOP-2-H4b01	4.07	2 93	55/15	2 13E-04	6.16E-06	1.20230	0.00307	1.24013	0.00410	324 /11	22	1.20257	0.00307	1.24610	0.00410	1.02041	324	22	324	22
50	Oknotnicnya	30F-2-1	4.51	2.55	5545	2.136-04	0.102-00	1.10010	0.00344	1.13334	0.00410	411	22	1.10015	0.00344	1.15550	0.00410	1.43040	411	22	411	
57	Okhotnichva	SOP-3-B	0.27	1.68	655	2 02F-03	7 90F-06	1 30426	0.00579	1 21316	0 00024	>550	n/a	1 30477	0.00582	1 21351	0.00051		>550	n/a	>550	n/a
57	olaiotailigu	501 5 5	0.27	1.00	000	LIGEL 05	71502 00	1.50 120	0.00575	1.21510	0.0002.		ny u	1.50 177	0.00502	1.21001	0.00001		, 550			, u
58	Okhotnichva	SOP-6-A1	0.40	9.03	140	7.35F-03	3.04F-05	1.01166	0.00347	1.01306	0.00003	546	73	1.01173	0.00381	1.01314	0.00153		545	92	545	92
																			0.0			
59	Okhotnichva	SOP-11-A	0.82	2.39	1059	9.51E-04	5.23E-06	0.99527	0.00368	1.01421	0.00003	407	17	0.99527	0.00369	1.01422	0.00020	1.04489	407	18	407	18
60	Okhotnichva	SOP-15-B-low	1.27	1.43	4765	3.68E-04	3.53E-06	1.76224	0.00534	1.59181	0.00278	399	10	1.76248	0.00534	1.59199	0.00279	2.82747	399	10	399	10
61	Okhotnichya	SOP-15-D	1.59	2.31	3708	4.77E-04	1.38E-05	1.77990	0.00515	1.60476	0.00416	399	12	1.78021	0.00516	1.60500	0.00417	2.87092	399	12	399	12
62	Okhotnichya	SOP-15-G	1.56	0.88	9544	1.86E-04	5.37E-06	1.77888	0.00514	1.60248	0.00416	402	12	1.77900	0.00514	1.60258	0.00416	2.87952	402	12	402	12
63	Okhotnichya	SOP-15-H	1.73	0.97	9543	1.84E-04	1.77E-06	1.77264	0.00537	1.59660	0.00278	405	11	1.77276	0.00537	1.59669	0.00278	2.87437	405	11	405	11
64	Okhotnichya	SOP-16-A	1.70	4.22	308	8.13E-04	2.99E-06	0.24616	0.00090	3.68366	0.00544	7.462	0.030	0.24566	0.00095	3.68547	0.00552	3.74255	7.443	0.032	7.383	0.032
65	Okhotnichya	SOP-16-B3	1.81	0.27	35559	4.83E-05	4.64E-07	1.90303	0.00578	1.75890	0.00278	321	5	1.90307	0.00578	1.75893	0.00278	2.88277	321	5	321	5
66	Okhotnichya	SOP-16-D	2.74	40.21	393	4.81E-03	1.39E-04	1.89155	0.00547	1.75410	0.00416	318	5	1.89510	0.00586	1.75711	0.00455	2.85689	317	6	317	6
67	Okhotnichya	SOP-16-F	3.41	0.29	66187	2.80E-05	8.12E-07	1.87074	0.00541	1.70916	0.00416	347	7	1.87076	0.00541	1.70917	0.00416	2.88877	347	7	347	7
68	Okhotnichya	SOP-16-G2-top	1.20	0.72	8735	1.97E-04	5.70E-06	1.73262	0.00500	1.56562	0.00416	407	13	1.73273	0.00501	1.56571	0.00416	2.78810	407	13	407	13
69	Okhotnichya	SOP-16-T	2.80	0.56	25827	6.53E-05	6.26E-07	1.72275	0.00524	1.55527	0.00278	414	12	1.72279	0.00524	1.55530	0.00278	2.78914	414	12	414	12
70	Okhotnichya	SOP-17-E1	0.19	0.32	1835	5.51E-04	3.88E-06	1.00548	0.00514	1.00842	0.00001	>550	n/a	1.00548	0.00515	1.00842	0.00011		>550	n/a	>550	n/a
					-																	
71	Okhotnichya	SOP-18-A	0.85	25.84	2	9.92E-03	2.32E-05	0.02071	0.00109	3.48837	0.00504	0.647	0.034	0.01261	0.00471	3.50895	0.01173	3.51172	0.391	0.146	0.331	0.146
72	Okhotnichya	SOP-18-F2	1.48	3.68	256	8.13E-04	3.38E-06	0.20595	0.00079	3.62683	0.00532	6.316	0.027	0.20542	0.00085	3.62860	0.00540	3.6/5/9	6.296	0.028	6.236	0.028
/3	Oknotničnya	SOP-18-G	2.09	0.49	23707	7.62E-05	5.77E-06	1.82321	0.00959	1.67296	0.00136	346	9	1.82326	0.00959	1.67300	0.00136	2.78779	346	9	346	9
74	Okhotnichuo	COD 10 D	1 22	0.50	201	1 225 04	1 275 06	0.05315	0.00025	2 20000	0.00496	1 (20)	0.009	0.05205	0.00025	2 20716	0.00496	2 40954	1.676	0.000	1.616	0.000
74	Okhotnichya	SOP 10 F1	1.22	0.30	961	1.33E-04	1.115.05	0.03213	0.00023	2 54062	0.00480	2.02	0.008	0.03203	0.00023	3.33710	0.00480	2 57102	2.024	0.009	2 964	0.009
76	Okhotnichya	SOP-19-H	1.25	1 90	430	3.76E-04	1.89E-06	0.05454	0.00103	3.61781	0.00278	4.90	0.03	0.15985	0.00105	3.61862	0.00278	3 65505	4 888	0.032	4 878	0.032
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Charlot incriga	301 19-11	1.05	1.50	-30	5.70L-04	1.031-00	0.10011	0.000004	5.01/01	0.00000	4.50	0.02	0.13303	0.00000	5.01002	3.00002	3.03303	4.000	0.019	-1.020	0.019
77	Okhotnichva	SOP-20-A	0.64	0.72	51	3.69F-04	1.44F-06	0.01764	0.00017	3,16366	0.00241	0.608	0.006	0.01734	0.00024	3,16432	0.00244	3,16798	0.597	0.008	0.537	0.008
78	Okhotnichva	SOP-20-B	0.67	0.24	265	1.17E-04	5.99E-07	0.03081	0.00039	3.21976	0.00122	1.044	0.013	0.03071	0.00039	3.21998	0.00122	3.22652	1.041	0.013	0.981	0.013
79	Okhotnichya	SOP-20-C	0.83	0.25	410	9.81E-05	5.03E-07	0.04018	0.00051	3.26408	0.00597	1.345	0.017	0.04011	0.00051	3.26427	0.00597	3.27288	1.343	0.017	1.283	0.017
80	Okhotnichya	SOP-20-D1	0.89	0.40	351	1.46E-04	1.01E-06	0.05147	0.00102	3.17922	0.00122	1.772	0.035	0.05135	0.00102	3.17948	0.00122	3.19040	1.768	0.035	1.708	0.035
81	Okhotnichya	SOP-20-D2.1	0.95	0.32	626	1.08E-04	2.96E-07	0.06788	0.00037	3.29054	0.00122	2.262	0.013	0.06780	0.00038	3.29075	0.00122	3.30542	2.259	0.013	2.199	0.013
82	Okhotnichya	SOP-20-D2.2	0.96	0.88	322	3.01E-04	8.25E-07	0.09653	0.00053	3.21470	0.00122	3.305	0.018	0.09630	0.00055	3.21526	0.00125	3.23599	3.296	0.019	3.236	0.019
83	Okhotnichya	SOP-20-D3.1	1.01	0.64	549	2.07E-04	4.43E-07	0.11398	0.00025	3.23234	0.00122	3.889	0.009	0.11383	0.00026	3.23273	0.00123	3.25737	3.883	0.009	3.823	0.009
84	Okhotnichya	SOP-20-D3.2	1.22	0.26	1938	7.01E-05	1.46E-07	0.13793	0.00029	3.25024	0.00122	4.694	0.010	0.13788	0.00030	3.25037	0.00122	3.28041	4.692	0.010	4.632	0.010
85	Okhotnichya	SOP-20-E1	1.34	0.15	3903	3.55E-05	7.50E-08	0.14296	0.00031	3.19777	0.00122	4.950	0.011	0.14294	0.00031	3.19784	0.00122	3.22879	4.949	0.011	4.889	0.011
86	Okhotnichya	SOP-20-E	1.36	0.61	1025	1.47E-04	7.17E-07	0.14971	0.00052	3.17493	0.00441	5.226	0.020	0.14961	0.00053	3.17519	0.00441	3.20753	5.222	0.020	5.162	0.020
87	Okhotnichya	SOP-20-E2	1.25	0.30	1948	7.92E-05	1.66E-07	0.15547	0.00033	3.27263	0.00122	5.265	0.012	0.15541	0.00033	3.27278	0.00122	3.30684	5.263	0.012	5.203	0.012
88	Okhotnichya	SOP-20-H	1.14	0.51	1195	1.47E-04	4.24E-06	0.17811	0.00053	3.32116	0.00416	5.958	0.020	0.17801	0.00054	3.32144	0.00416	3.36084	5.954	0.020	5.894	0.020
89	Okhotnichya	SOP-20-J1	1.25	0.73	1034	1.92E-04	5.57E-06	0.20147	0.00060	3.34753	0.00416	6.705	0.022	0.20135	0.00060	3.34791	0.00417	3.39279	6.700	0.022	6.640	0.022
90	Okhotnichya	SOP-20-K	1.26	0.68	1251	1.78E-04	5.17E-06	0.22512	0.00067	3.40800	0.00416	7.376	0.024	0.22501	0.00067	3.40835	0.00417	3.45905	7.371	0.024	7.311	0.024
91	Okhotnichya	SOP-20-M	1.34	0.71	1500	1.74E-04	2.86E-07	0.26729	0.00034	3.39547	0.00094	8.836	0.012	0.26719	0.00034	3.39582	0.00096	3.45637	8.831	0.012	8.771	0.012
92	Okhotnichya	SOP-20-P1	0.78	3.38	1223	1.42E-03	1.90E-06	1.75157	0.00232	1.59552	0.00386	377	7	1.75245	0.00239	1.59622	0.00389	2.73152	377	7	377	7
93	Okhotnichya	SOP-20-V	0.96	0.76	5863	2.57E-04	3.39E-07	1.53988	0.00202	1.38834	0.00386	>550	n/a	1.53999	0.00202	1.38843	0.00386		>550	n/a	>550	n/a
94	Okhotnichya	SOP-20-X	0.41	0.45	3035	3.59E-04	6.05E-07	1.12390	0.00147	1.08340	0.00386	>550	n/a	1.12393	0.00148	1.08343	0.00386		>550	n/a	>550	n/a
95	Okhotnichya	SOP-20-AB	0.47	0.32	4600	2.24E-04	2.93E-07	1.07660	0.00140	1.04926	0.00094	>550	n/a	1.07662	0.00140	1.04927	0.00095		>550	n/a	>550	n/a

Supp	plementary Table 1, pag	ge 3.																				
Nu.	Cave	Sample	²³⁸ U (ppm)	²³² Th (ppb)	(²³⁰ Th/ ²³² Th)	(²³² Th/ ²³⁸ U)	2σ abs	(²³⁰ Th/ ²³⁸ U)	2σ abs	(²³⁴ U/ ²³⁸ U)	2σ abs	Raw Age (ka before 2010 A.D.)	2σ	(²³⁰ Th/ ²³⁸ U) corr.	2σ abs	(²³⁴ U/ ²³⁸ U) corr.	2σ abs	(²³⁴ U/ ²³⁸ U) initial*	Age corr. (ka before 2010 A.D.)	2σ	Age (ka before 1950 A.D.)	2σ
96	Okhotnichya	SOP-25-B	2.17	1.03	356	1.56E-04	6.11E-07	0.05476	0.00021	2.16279	0.00236	2.783	0.011	0.05464	0.00022	2.16293	0.00236	2.17210	2.777	0.012	2.717	0.012
97	Okhotnichya	SOP-25-J	2.56	2.61	3839	3.34E-04	3.75E-06	1.26834	0.00447	1.76969	0.00156	120.96	0.74	1.26841	0.00447	1.76990	0.00156	2.08364	120.94	0.74	120.88	0.74
98	Okhotnichya	SOP-30-A1.2	0.88	1.61	1675	5.99E-04	1.74E-05	1.01000	0.00289	0.99783	0.00450	>550	n/a	1.01000	0.00290	0.99783	0.00450		>550	n/a	>550	n/a
														=								
99	Okhotnichya	SOP-32-B**	1.17	17.67	297	4.95E-03	1.43E-04	1.47219	0.00422	2.53198	0.00450	85.40	0.41	1.47413	0.00447	2.53827	0.00561	2.95737	85.25	0.45	85.19	0.45
100	Okhotnichya	SOP-32-K	3.14	0.78	20292	8.15E-05	8.22E-06	1.82337	0.00961	2.41648	0.00336	126.96	1.16	1.82342	0.00961	2.41658	0.00336	3.02805	126.96	1.16	126.90	1.16
101	Okhotnichya	SOP-32-M	2.66	12.44	1197	1.53E-03	1.54E-04	1.83320	0.00966	2.44272	0.00336	125.70	1.14	1.83426	0.00969	2.44454	0.00350	3.06044	125.65	1.14	125.59	1.14
102	Shar-Khana	MSHK-1-B	13 30	12.76	3185	3 1/F-0/	8 /3E-07	1 00800	0.00264	1 00466	0.00226	>550	n/a	1 00800	0.00264	1 00/66	0.00226		>550	n/2	\550	n/a
102	Shar-Khana	MSHK-4-F	2 25	6.66	1039	9.67E-04	1 75E-06	1.00788	0.00204	1.00400	0.00220	>550	n/a	1.00789	0.00204	1.00400	0.00220		>550	n/a	>550	n/a
104	Shar-Khana	MSHK-4-E	2.25	4 97	1367	7 25E-04	1.75E-06	0.99642	0.00172	1.00201	0.00220	>550	n/a	0.99642	0.00173	1.00202	0.00227		>550	n/a	>550	n/a
101			2.23		1007	7.252 01	1.522 00	0.00012	0.001/2	1.00005	0.00220			0.55012	0.00175	1.00005	0.00227		- 550	, a		
105	Shar-Khana	MSHK-7-A	13.89	25.79	1645	6.08E-04	1.42E-06	1.00271	0.00226	1.01726	0.00226	423	20	1.00271	0.00226	1.01727	0.00226	1.05699	423	20	422	20
106	Shar-Khana	MSHK-7-F	4.03	0.50	23535	4.09E-05	7.18E-08	0.99617	0.00164	1.00926	0.00226	447	25	0.99617	0.00165	1.00926	0.00226	1.03274	447	25	447	25
107	Shar-Khana	MSHK-16-D1	0.26	1.90	459	2.37E-03	4.10E-06	1.08897	0.00177	1.04852	0.00226	>550	n/a	1.08915	0.00184	1.04861	0.00232		>550	n/a	>550	n/a
108	Gurvan-Zerd	MGZ-8-F (II)	3.36	0.88	11488	8.60E-05	1.53E-07	1.01451	0.00170	1.00884	0.00226	>550	n/a	1.01451	0.00170	1.00884	0.00226		>550	n/a	>550	n/a
109	Gurvan-Zerd	MGZ-9-A2 (II)	3.25	0.35	27265	3.47E-05	5.15E-08	1.00402	0.00150	1.00224	0.00098	>550	n/a	1.00402	0.00150	1.00224	0.00098		>550	n/a	>550	n/a
110	Gurvan-Zerd	MGZ-14-F (II)	2.99	0.22	38448	2.42E-05	4.24E-08	0.99804	0.00164	1.00202	0.00226	>550	n/a	0.99804	0.00164	1.00202	0.00226		>550	n/a	>550	n/a
111	Lovon-Chombo	MLCH-5-B	1.95	1.53	3879	2.57E-04	4.45E-07	1.00168	0.00163	0.99928	0.00226	>550	n/a	1.00168	0.00163	0.99928	0.00226		>550	n/a	>550	n/a

Supplementary Table 1: Dating results, isotopic activity ratios are shown in brackets. (*) Initial ²³⁴U/²³⁸U activity ratios are presented for the ages younger than 450 ka; (**) In samples SLL9-2-A+B and SOP-32-B each age is a mix of two different growth periods (in SLL9-2-A+B the layer A contaminated with older layer B; in SOP-32-B the layer B contaminated with material from younger layer A). Because of contamination the dating results of these two layers are not included in Figures 2 and 3.

Supplementary Table 2:									
								Indices	
								A model	
								93.2	
								A overall	
Name	Unmodelle	ed age (BP)			Modelled	age (BP)		93.2	
	from	to	depth (cm)	%	from	to	%	А	С
Phase									
Sequence									
Phase									
P_Sequence(1.5)									
Boundary start2			3.80		9712	8351	95.4		98.4
C_Date SB-p6929-bot	8486	8381	3.50	95.4	8484	8377	95.4	99	99.8
C_Date SB-p6929-top	750	740	0.20	95.4	750	740	95.4	98.3	99.5
Boundary =end			0.00		755	-212	95.4		98.8
P_Sequence(1.5)									
Boundary start			7.00		9999	9769	95.4		99
C_Date SB-p7497(1)-I	9943	9805	6.90	95.4	9932	9787	95.4	93.4	99.6
C_Date SB-p7497(1)-A1	464	457	0.10	95.4	464	457	95.4	97.4	98.8
Boundary =end			0.00		469	144	95.4		96.2
P_Sequence(1.5)									
Boundary =start			6.00		9999	9769	95.4		99
C_Date SOP-20-M	8796	8747	5.40	95.4	8796	8746	95.4	98.5	100
C_Date SOP-20-K	7361	7263	4.75	95.4	7360	7262	95.4	99.6	100
C_Date SOP-20-J1	6684	6595	4.30	95.4	6685	6594	95.4	99.6	100
C_Date SOP-20-H	5935	5854	3.70	95.4	5935	5854	95.4	99.4	100
C_Date SOP-20-E2	5290	5240	3.30	95.4	5290	5240	95.4	98.5	100
C_Date SOP-20-E1	4911	4866	2.65	95.4	4912	4865	95.4	98.3	100
C_Date SOP-20-D3.2	4654	4610	2.30	95.4	4654	4610	95.4	98.1	100
C_Date SOP-20-D3.1	3843	3804	1.95	95.4	3843	3803	95.4	97.7	100
C_Date SOP-20-D2.2	3275	3198	1.65	95.4	3275	3198	95.4	99.4	100
C_Date SOP-20-D2.1	2224	2173	1.35	95.4	2225	2172	95.4	98.8	100
C_Date SOP-20-D1	1780	1636	1.05	95.4	1780	1635	95.4	99.7	100
C_Date SOP-20-C	1318	1248	0.75	95.4	1318	1247	95.4	99.3	100
C_Date SOP-20-B	1008	954	0.45	95.4	1009	953	95.4	98.8	100
C_Date SOP-20-A	554	520	0.20	95.4	556	520	95.4	96.8	99.7
Boundary =end			0.00		566	-141	95.4		97.8

Supplementary Tables 2-3: OxCal-4.1 modelling results, the unmodelled and modelled ages are given in years BP. The agreement indices (A) for each age model and for individual events are >60%. Convergence tests (C) are >95%, indicating that the modelled results are a realistic representation of the input data and model (20).

Supplementary Table 3	:								
Name	Linmodell	ad age (BP)			Modelled	age (BD)		Indices A model 86.8 A overall 87 7	
Nume	from	to	denth (cm)	%	from		%	Δ	C
Phase			ucptil (elli)	70	nom	10	70		C
Sequence									
Phase									
P_Sequence(1.5)									
Boundary start			7.90		128678	127318	95.4		98.9
C_Date SB-p6919-c4	128540	127471	7.80	95.4	128453	127360	95.4	95.5	99.3
C_Date SB-p6919-C1	119098	118123	2.50	95.4	119262	118336	95.4	86	99.3
Boundary end			2.20		119243	118129	95.4		97
P_Sequence(1.5)									
Boundary start2			11.70		125320	121190	95.4		97.8
C_Date SB-p7497-O	123982	121441	11.30	95.4	123959	121314	95.4	97.6	99.3
C_Date SB-p7497-J	119868	117786	7.20	95.4	119443	118209	95.4	123.2	98.5
Boundary =end			7.00		119243	118129	95.4		97
P_Sequence(1.5)									
Boundary =start			5.50		128678	127318	95.4		98.9
C_Date SOP-2-F3	126759	125323	5.20	95.4	126905	125480	95.4	96.3	99.8
C_Date SOP-2-F1	124905	123482	3.40	95.4	124698	123312	95.4	92.8	99.9
C_Date SOP-2-Ebot	123740	122322	3.10	95.4	123861	122450	95.4	95.8	99.9
C_Date SOP-2-Etop	120109	118768	1.60	95.4	119885	118564	95.4	81.7	97.1
Boundary =end			1.50		119243	118129	95.4		97